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MODELING TURBULENT TRANSFER IN A CHANNEL 

BY MEANS OF POINT VORTICES 

P. I. Geshev and B. S. Ezdin UDC 532.527+532.4 

Much attention has recently been paid to the direct numerical modeling of turbulence. 
Some studies have examined three-dimensional turbulent flow in a channel at moderate Reynolds 
numbers Re by numerically solving the complete system of Navier-Stokes equations [i]. The 
main difficulty in such calculations is that motions on a scale much smaller than the dis- 
tance between the nodes of the finest computing grids used in practice are important in tur- 
bulence at sufficiently large Re. Despite the increasing capacity of modern computers, the 
limitation on Re remains. There are other approaches to the numerical modeling of wall tur- 
bulence, such as the method of large vortices [2]. In this method, the scales of motion are 
divided into a calculable part (by means of "filtered" Navier-Stokes equations for large 
scales) and a closable, small-scale part (a one-parameter closing relation is generally used), 
i.e., the hypothesis of the independence of small-scale motions from large-scale motions is 
employed. In accordance with the principle of the similarity of turbulent flows with respect 
to the Reynolds number [3], the large-scale motion of a continuum away from the walls is slight- 
ly dependent on Re. Thus, it can be described by the equations of an ideal swirled fluid. 
In the proposed computational scheme, transverse motion is modeled by the inviscid two-dimen- 
sional motion of point vortices, while the complete Navier-Stokes equation, with a constant 
pressure gradient, is calculated in the mean direction of motion. Two-dimensional point vor- 
tices have been used to study mainly free flows - jets and wakes in flow about different re- 
cesses and projections. It was shown in [4] that the spectral energy flux is constant in a 
system of point vortices and the flow spectrum is close to a Kolmogorov spectrum. The "5/3" 
law follows from similarity theory in the case of isotropic turbulence. In wall turbulence, 
this theory leads to logarithmic velocity profiles in the region where the flow of the longi- 
tudinal component of momentum to the wall is constant [5]. Considering the successful model- 
ing of isotropic turbulence in [4], there is hope for obtaining interesting results in wall 
turbulence by modeling turbulent transfer by the method of longitudinal point vortices. It 
was shown in the present study that such calculations give results which agree qualitatively 
with experimental findings; the logarithmic profiles of velocity and temperature are calcu- 
lated, profiles of the Reynolds stresses and turbulent heat fluxes are obtained, and the amp- 
litudes of fluctuating quantities are investigated. A model of turbulence based on point 
vortices should be considered a direct numerical model. Such an approach has an undoubted 
advantage, since it does not require any closing assumptions. 
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i. Formulation of the Problem. We will examine the turbulent flow of an incompressible 
liquid flowing in a plane channel of height H in the direction of the x axis. The y axis 
is directed normal to the walls, while the z axis is normal to the x and y axes, i.e., the 
channel forms two planes y = 0 and y = H. The flow is assumed to be uniform along the chan- 
nel (along the x axis) - the longitudinal velocity depends only on the transverse coordinates 
y and z and the time t; its mean characteristics are also independent of z, which is very 
important and is used to obtain large statistical samples. A system of i03-i04 point vortices 
is used to model motions in the y and z directions. The longitudinal velocity u and tempera- 
ture @ are determined by solving the equations of convective transfer of momentum and heat, 

respectively. 

We introduce the dimensionless variables (the dimensional variables have the superscript 

O) : 

x =  x~  y = g~ z = z~  

v = v~ *, p = p~ 0 = (T - -  T~)IO% 

where v* = ~w-~ is the dynamic velocity; ~w, shear stress on the wall; p, density of the 
liquid; 0" = qw/(pcpv*), dynamic temperature; qw, heat flux from the wall; Cp, specific heat 
of the liquid. The system of two-dimensional nonsteady equations is written as follows in 

the new variables: 

A,~ = --r ( 1 . 1 )  

+ v ~ + w az dx +Re*kay ~ + az 2 ) '  ( 1 . 2 )  

ao v a ~  oo t ( o~o, + a~o "~ 
a-T + 7 F  + w  a-Z-= p,~*ta-~" ~-7~-') '  

where Re* = Hv*/v ;  Pe* = Hv*/a ;  ~ i s  v i s c o s i t y ;  a i s  t h e  d i f f u s i v i t y  o f  t h e  l i q u i d .  
p o n e n t s  o f  v e l o c i t y ,  t h e  s t r e a m  f u n c t i o n  ~, and v o r t i c i t y  ~ a r e  c o n n e c t e d  by t h e  r e l a t i o n  
w = 8 @ / 8 y ,  v = - 3 ~ / ~ z ,  ~ = r o t u .  For  d i s c r e t e  i d e a l  v o r t i c e s ,  a l l  o f  t h e  v o r t i c i t y  i s  a s -  
sumed to  be c o n c e n t r a t e d  a t  i n d i v i d u a l  p o i n t s :  

(1.3) 

The c o m -  

N 

m= ~ r ~ a ( x -  x~(t)). (1.4) 
' n : l  

Here, Fn is the circulation around the n-th vortex; 6 is the delta function; Xn(t) is the in- 
stantaneous ]position of the n-th vortex. 

The boundary conditions with respect to the variable y: 

for nonflow condition 

the "adhesion" condition 

tp(z, y = O ) = ~ ( z , y = H ) = O ;  ( 1 . 5 )  

u(z ,  y = o) = u(z ,  y = I t )  = O. ( 1 . 6 )  

Boundary  c o n d i t i o n s  o f  t h e  f i r s t  and second  k ind  a r e  u sed  on t h e  bo t tom and t op  w a l l  f o r  tem- 
p e r a t u r e ,  r e s p e c t i v e l y :  

O(z, y = O) = O, aO/Oy(z, y = H) = - -Pe* .  ( 1 . 7 )  

Periodic boundary conditions are assumed for u, ~, and 0 with respect to z: 

,~(z = 0, y) = ~ ( z  = L,  g), u@ = 0, y) = u(z = L ,  y) ,  O(z = O, y) = 0 ~ ,  = L~ y).  ( 1 . 8 )  

It is clear :from the formulation of the problem that transverse motion in the proposed model 
does not depend on the longitudinal motion, and no energy is transferred from the mean motion 
u to transverse pulsations w and v. Since dissipative terms are also absent from the equa- 
tions for w and v, kinetic energy is conserved in the y-z plane. 

In an actual flow, the rate of transverse motion always depends on the rate of longi- 
tudinal motion, so that it is necessary for these rates to agree. In our case, the mean rate 
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of motion is determined by the parameter Re* (or v*), while the rates of transverse motions 
are determined by the quantities Fi (i = 1 ..... N). It is necessary to select Fi such that 
both ratios w/v* and v/v* are close to unity, as was seen in the experiment in [5]. Thus, 
ri is a free parameter in the given model. 

The energy of transverse motion is expressed by the integral 

E =~. ] ~ (w ~ + v) ~dydz. (1.9) 

In turn, the energy of the vortex system in the case of triviality of the total intensity 

of the vortices F~ = 0 and a sufficiently uniform spatial distribution is determined by 

the formula [6] 

I E =~.NF~. (i.I0) 

It follows from (1.9) and (i.i0) that the intensity of point vortices for satisfaction of 
the conditions w ~ v* and v ~ v* must be taken in the form Fi = v*~S-7~, where S = HL is the 
cross-sectional area of the channel. 

It is known that problems involving direct numerical modeling of turbulence face the 
challenge of not only having resolvable scales, but also of obtaining enough statistical data 
to find mean values [7]. 

This is connected with the fact that the statistical error in averaging decreases in 
inverse proportion to the root of the number of independent values of the random variable. 
Thus, to calculate mean values of the quantities which are of interest to us, it is necessary 
to use very large samples. This means that it is necessary to repeatedly integrate the equa- 
tions over long time intervals with variation of the initial conditions (averaging over the 
ensemble of realizations). The problem is simplified in the case of uniform and stationary 
turbulence, since then we can average not only over time, but also over a uniform and stationary 
able (such as the coordinate z). All of the mean values will then be determined by the formula 

L t2 

, ;f, dtd., 
o t t 

where t 2 - t I and L is the length of the time and space intervals, respectively. 

Averaging over time was done with a steady flow, i.e., a statistically stationary flow, 
while the length of the interval was chosen to be much greater than the characteristic time 
of rotation of the vortices L/v* to obtain a reliable average. 

2. Method of Solution. The problem of the motion of point vortices in an ideal fluid 
was solved by the method in [8]. This is essentially the Lagrange-Euler method of particles 
in cells, but instead of particles of mass we are examining point vortices. The solution 
was begun by determining the grid function m in the right side of Eq. (i.i). The known posi- 
tion of the vortices was used to distribute the vorticity of each vortex among the four clos- 
est nodes of the grid in proportion to the four areas A, B, C, and D into which the grid cell 
was divided by lines passing through the vortex (Fig. i). This method assures second-order 
accuracy and is called the method of weighted areas [8]. We then solved the Poisson equation 

230 



~ o/ z~9 o ~ ~  

1 I0 10 2 ~i + 

Fig. 2 

(i.i) and used the already-known stream function and the operation of differentiation to de- 
termine the transverse velocity field v and w. We then used v and w to solve convection equa- 
tions (1.2) and (1.3) and find the new position of the vortices. Time integration of system 
(i.I)-(!.3) was effected in the above sequence. The initial position of the vortices was 
randomly assigned. The total vorticity of the positive vortices was equal to the vorticity 
of the negative vortices. Equations (1.1)-(1.3) were approximated by second-order difference 
schemes on a nonuniform grid along the y axis, with crowding toward the walls. The grid was 
introduced in the direction away from the wall in accordance with a law of arithmetic pro- 
gression from 0.i to 1.6. At least 7-8 nodes were located in the region of the logarithmic 
layer. Altogether we studied 35 y nodes, so that the width H = 30.6. 

Direct methods [9] are the most efficient methods of solving the Poisson equation (I.i) 
with right side (1.4) in a channel with boundary conditions (1.5)-(1.8). Fourier transforma- 
tion in the z direction ensures periodicity of the solution with the period L over z and re- 
duces the two-dimensional problem to a series of one-dimensional problems which are easily 
solved by a trial run over y [9]. We used a rapid Fourier transform (RFT) on a grid which 
was uniform with respect to z. The grid had 64 nodes and the period L = 64. The equations 
of motion of the vortices x = un (n = i, ..., N) were integrated by the second-order Eulerian 
method. The number of vortices in the calculations N = 1024. 

Equations (1.2) and (1.3) were solved by implicit methods with the use of RFT for the 
variable z and a trial run for the variable y. The nonlinear terms were approximated by an 
explicit scheme similar to that of Arakav [i0] and having the property of retaining the mean 
values of vorticity, the square of the curl, and kinetic energy. This makes it possible to 
transform the flow structure without distortion (the kinetic energy and the square of the 
curl are transferred from one grid node to another in the two-dimensional region without a 
hypothetical increase or decrease), which is important for integrating transport equations 
over a long time interval. We also used the usual central finite-difference scheme on the 
nonuniform grid. 

Methodological work was done to determine the effect of errors of the approximation. 
The method of "sample" functions [i0] was used to study the effect of the mesh of the grid, 
the time step, and the value of the coefficient in front of the diffusion term on the accuracy 
of the calculations. To do this, we used different grids which were nonuniform and uniform 
with respect to y. To check the accuracy of calculation of vortex motion in a plane, we com- 
pared the solutions for two point vortices obtained by Christiansen's method and solutions 
found analytically by the accurate method of conformal mapping [ii]. The difference in the 
trajectories of the vortices calculated by these methods was no greater than 3% for the period 
of motion. The methodological study allowed us to guarantee that the error of the calcula- 
tions for the parameters Re* and Pc* did not exceed 103 on a 65 x 35 grid. 

The calculations were performed in two stages. In the first stage we calculated the 
motion of the vortices and on magnetic computer tape recorded successive (in time) values 
of the stream functions ~(z, y, t). The second stage entailed the solution of evolutionary 
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equations of convective transport for u and @. Here we used the recorded values of the stream 
functions. The instantaneous values of u(y, z, t) and @(y, z, t) were again recorded on mag- 
netic tape for later statistical analysis in which we first calculated the mean values 0 and 
u and then calculated the rms values "u~, Ova, /v ~ and correlations u'v' and ~78 i . The 
number of time steps was 2000, and the time step was 5"10 -2 , so that the dimensionless com- 
puting time was 102 . 

3. Results of Calculations. We will present the most important results of modeling 
of turbulent transport. Curve I (Fig. 2) uses traditional semilogarithmic coordinates to 
show the velocity profile for Re* = 300, 500, and 800 (points 1-3), which corresponds to flow- 
rate Reynolds numbers of 2030, 3615, and 5894. It is quite evident that the logarithmic sec- 
tion of the velocity profile stretches out with an increase in Re*. The circulation of the 
point vortices Fi, which determines the rate of transverse motion, was chosen uniquely for 
this case. The logarithmic line of mean velocity has the form u + = A In y + + B, where A = 
1.41 and B = 0.35, while y+ = Re*y/H. 

Curve II is the profile of mean velocity for Fi = 5. It is apparent that longitudinal 
velocity decreases as a result of an increase in transverse velocity. Here, A = 0.54 and 
B = 0.4. It follows from Fig. 2 that the calculated mean velocity is considerably lower on 
the graph than the well-known experimental velocity profile in a channel in [5]. This is 
evidently attributable to the greater transverse velocity near the channel walls: due to 
the absence of viscosity, the motion is not damped by the wall (for example, the w component 
on the wall is generally nontrivial). Analogously to this, the greater turbulence in flows 
near a rough surface leads to a decrease in longitudinal velocity relative to the universal 
profile for a smooth wall. It can also be concluded from Fig. 2 that higher transverse vel- 
ocity leads as it were to degeneration of the viscous sublayer; there is no section of linear 
behavior along y near the wall. At large y+ in the central part of the channel, the veloc- 
ity profiles deviate upward from the logarithmic law. The same is seen for the universal 
profile in the experiments in [5]. 

Figure 3 shows the rms pulsations of velocity and temperature: points 1 and 4 are for 
ri = 1 and 2, and point 3 is for Fi = 5. The behavior of the theoretical longitudinal rms 
velocity pulsation is in qualitative agreement with the experimentally determined value [5]. 
The value for ~-2 is somewhat lower than the experimental value. Figure 4 shows the Rey- 
nolds stresses u'v' (the lines represent the total shear stresses). The temperature profile 
is shown in Fig. 5 for Fi = 1 and for Pc* = 300, 500, and 800 (points 1-3). It is evident that 
it also has a logarithmic section. The formula for the mean temperature O* = AO in y_ + BO, 
where the constants AO = 1.40 and B@ = 3.35; y_ = Pc* y/H. The turbulent Prandtl number turns 
out to be very close to unity Prt = A/Ao = 1.41/1.40. Figure 6 shows the turbulent heat flux 
@'v ~ . 

The processor time required on a 1060 computer on one time step to solve the vortex- 
motion problem is 2.1 sec, while 1.5 sec are required to solve the convective transport equa- 
tion. The maximum number of vortices in the computations was i0 ~ The computing time here 
increases significantly (to 7 sec per step). The results of the calculations are not pre- 
sented here, but it must be noted that the resulting mean values are smoother functions of y. 
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Thus, we did not consider the effects of viscosity on turbulent transfer, but the most 
important theoretical characteristics of turbulent flow agree qualitatively with the experi- 
:mental findings. It can be concluded that point vortices correctly describe the dynamics 
of large-scale energy-containing motions not directly dependent on viscosity. This means 
that the proposed model correctly describes not only mean characteristics, but also other 
statistical characteristics which are independent of viscosity - primarily second-order mo- 
ments (pulsation intensity, Reynolds stresses, turbulent heat fluxes). 
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